A NOVEL DEEP BELIEF-BASED MODEL FOR THE INTRUSION DETECTION OF NETWORK TRAFFIC
ABSTRACT: The fast expansion of networked systems, combined with the pervasive reliance on the internet, has raised worries about network security, needing new defense methods. Intrusion Detection Systems (IDS) use a variety of ways to distinguish between legitimate and malicious network traffic, including rule-based, signature-based, anomaly detection, and machine learning approaches. While signature-based IDS excel